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SUMMARY
The dissection of a gene regulatory network (GRN) that complements the genome-wide association study
(GWAS) locus and the crosstalk underlying multiple agronomical traits remains a major challenge. In this
study, we generate 558 transcriptional profiles of lint-bearing ovules at one day post-anthesis from a selec-
tive core cotton germplasm, fromwhich 12,207 expression quantitative trait loci (eQTLs) are identified. Sixty-
six known phenotypic GWAS loci are colocalized with 1,090 eQTLs, forming 38 functional GRNs associated
predominantly with seed yield. Of the eGenes, 34 exhibit pleiotropic effects. Combining the eQTLs within the
seed yield GRNs significantly increases the portion of narrow-sense heritability. The extreme gradient boost-
ing (XGBoost) machine learning approach is applied to predict seed cotton yield phenotypes on the basis of
gene expression. Top-ranking eGenes (NF-YB3, FLA2, and GRDP1) derived with pleiotropic effects on yield
traits are validated, along with their potential roles by correlation analysis, domestication selection analysis,
and transgenic plants.
INTRODUCTION

Genome-wide association studies (GWASs) are a common

method for detecting associations between genetic variation

and phenotype. GWASs can be traced back to the first decade

of the 2000s,1,2 or earlier. To date, tens of thousands of associ-

ated loci have been cataloged in major crops such as rice,3

wheat,4 maize,5 and cotton.6 However, although GWASs have

been very successful in identifying loci associated with pheno-

types, they still suffer from major limitations when it comes to

pinning down causal genes, because of issues with population

structure, the missing heritability of rare variations, and effects

from trans regulation networks, among other issues.

Notably, although accumulated common genomic variants

with small effect sizes can contribute to various traits, they

may be filtered out fromGWAS results by a stringent significance

threshold.7,8 In addition, GWASs focus on genomic variations in

the form of common SNPs and neglect rare variations with minor

allele frequency (MAF) values of less than 1%–5%.9 More impor-

tant, GWASs are limited in their ability to pinpoint causal variants
Ce
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and candidate genes because of the resolution of linkage

disequilibrium (LD) in small population sample size. LD blocks

can range in size from 30 kb in a common maize population10

to �100–200 kb in cultivated rice3 and �300–500 kb in cot-

ton.11,12 Consequently, the candidate genes associated within

an LD block can range in number from a few to a few hundred.

Theoretically, any gene within the LD block of a GWAS locus

could not be excluded as having a causal effect on the corre-

sponding trait. Additionally, the majority of GWAS loci are

located in non-coding region and likely manifest their effects

by regulating distant gene expression in trans.13 Unfortunately,

GWASs cannot accommodate the direct identification of

genome-spanning gene regulatory networks (GRNs). Collec-

tively, these limitations prevent further application of GWAS in

navigating the critical step of hub gene selection for precision

genome editing to improve crops.

One solution for overcoming the limitations of GWASs is to

integrate relevant expression data in addition to genetic varia-

tions. Notably, gene expression changes are efficient at intro-

ducing phenotypic changes in crops.14 Analysis of expression
ll Reports 42, 113111, September 26, 2023 ª 2023 The Authors. 1
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quantitative trait loci (eQTLs) is a method of establishing con-

nections between genetic variants and gene expression by

identifying expression-associated SNPs (eSNPs) and their

associated genes (eGenes). eGenes can locate either within

the same region as an eSNP or in a distal region, and eQTL

analysis can detect associated eGenes in cis and also in trans.

Alternatively, multiple genes can be regulated by a single trans-

eSNP, termed an eQTL hotspot, module, or GRN.15 Therefore,

each GRN is composed of eGenes both in cis and trans. The lat-

est study based on the Genotype-Tissue Expression (GTEx) da-

taset (version 8) demonstrated that a median of 21% of GWAS

loci from 87 tested complex traits colocalized with a cis-eQTL

when aggregated across 49 tissue types.16 Gene-gene interac-

tions within a GRN are proposed to be components of the

missing heritability for complex traits.17 The enclosed gene

number of GRNs, termed eQTL hotspots, ranges widely.

Thus, although integrated eQTL and GWAS analysis can pro-

vide functional GRNs associated with phenotypes, prioritizing

important genes in each GRN and their power to affect the

phenotype is still a challenge.

Extreme gradient boosting (XGBoost) is a machine learning

method, specifically a type of decision tree ensemble model

for classification and regression modeling.18,19 This tool is

remarkable for its ability to process missing data efficiently

and flexibly. It can also assemble weak prediction models,

from which a reliable one can be built.18,19 In a competition

hosted by Kaggle.com, XGBoost was found to be the best algo-

rithm for machine learning and prediction.20 As it can evaluate

the degree of feature importance, XGBoost can be used to pri-

oritize genes according to their criticality, as has been reported

in human populations.21,22 Pioneering research has been con-

ducted in plants, specifically mining N-responsive genes inAra-

bidopsis thaliana and maize.23 However, the application of

XGBoost to populations of crops or other plants is still in a pre-

liminary stage.

Previous GWASs in cotton have revealed associated loci for

multiple important agronomic traits including fiber produc-

tion,6,12 seed cotton yield,24,25 fiber quality,11,26 and abiotic

stress tolerance.27–29 Other recent studies have used eQTL hot-

spot analysis methods to dissect the genetic GRNs that regulate

fiber quality traits and pollen sterility.30,31 Nonetheless, although

a large number of phenotype-associated loci have been re-

ported in cotton populations, the causal genes and other impor-

tant genes within functional GRNs are still largely unknown

because of the lack of data mining methodology.

To characterize the genetic basis of cotton seed size and

yield, identify causal genes, and elucidate the underlying

GRNs associated with GWAS loci, we designed an integrative

eQTL and GWAS analysis using transcriptomes from the China

upland cotton population, CUCP1. The identified eGenes clus-

tered into 38 functional GRNs on the basis of the colocalization

of expression-associated lead SNPs (eSNPs) and phenotype-

associated lead SNPs (pSNPs) within LD blocks. The joint addi-

tive effect of yield-related GRNs was validated on the basis of

narrow heritability. Using XGBoost-derived feature importance

ranking, the causal genes NF-YB3, FLA2, and GRDP1 from

GRN were validated as having functional impacts on seed

development.
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RESULTS

Study overview
Figure 1 illustrates the aim of this work, which is to construct

GRNs and mine the genes that are important for seed size and

fiber yield.

Data
A core germplasm was collected for the China upland cotton

population, CUCP1, comprising a total of 279 Gossypium hirsu-

tum accessions, including 34 wild/landrace accessions and 245

cultivated accessions. The collection of cultivated accessions is

adapted from our previous GWAS catalog (Table S1).12

Cotton fiber differentiates from ovule epidermis at about �1 to

1 day post-anthesis (DPA). Approximately 25%–30% of the

epidermal cell can differentiate into fiber cells, which largely deter-

mine the fiber yield on each seed.32,33 To understand the expres-

sion variation associatedwith genetic variation in CUCP1 at the fi-

ber-yield determining stage, we profiled the transcriptomes of 1

DPA lint-bearing ovules for all 279 accessions, with two biological

replicates (Figure 1). The transcriptomes collectively provided

13.82 billion (mean 24.90 million per sample) paired-end reads,

with an average unique mapping rate at 97.11% (cultivar

97.23%, wild 96.32%) to the TM-1 cotton reference genome34

(Table S1). Previous reports indicate that most GWAS loci were

mapped to non-coding regions, potentially pointing to non-coding

variants.13 Accordingly, to detect as many causal genes as

possible, we also annotated long non-coding RNAs (lncRNAs)

and quantified their transcription for eQTL mapping (see STAR

Methods). A total of 37,108 protein-coding genes (PCGs) and

6,251 lncRNAs met the criteria for expressed genes (see STAR

Methods), accounting for 50.99%of all annotated genes in the up-

land cotton TM-1 (version 2.0) reference genome34; These were

used for further analysis. In parallel, whole-genome sequencing

(WGS) of the accessions generated a total of 1,186,673 biallelic

high-quality SNPs (MAF > 0.05 and missing ratio < 20%), which

were used for eQTL mapping (Figure 1).12

Workflow
First, GWASs and eQTLs were integrated to obtain pSNPs and

eSNPs, respectively. eGenes associated with the same eSNP

were grouped as GRNs. pSNPs and eSNPs within the same

LD block (r2 > 0.1) were defined as having colocalization.

Accordingly, a GRN also colocalized with a pSNP was consid-

ered as a functional GRN. Second, the eGenes in functional

GRNs were used as the features for the XGBoost algorithm in

predicting phenotype regression. The model’s performance

was evaluated using Pearson correlation coefficients (PCCs).

Next, the eGenes were ranked according to the feature impor-

tance score exported from the model. Third, the top-ranked

eGenes were selected for functional validation using heritability

analysis, domestication sweep identification, and transgenic

plants (Figure 1).

A map of eQTLs associated with fiber-bearing ovule
development
The quality of the 558 (2793 2) transcriptomes and their applica-

bility to eQTLmapping were evaluated by calculating PCCs from

http://Kaggle.com


Figure 1. Graphic summary of datasets and analyses performed in the present study

The principal goal is to dissect the genetic networks underlying phenotypic correlations and mine important genes. This schematic chart represents our datasets

and methods for network dissection and prioritization of important eGenes by integrating multiple omics (transcriptome, genome, and phenome).
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the transcriptome profiles. The PCCs of the two biological repli-

cates (mean r = 0.93) were found to be significantly higher than

those of different accessions (mean r = 0.77, p < 1 3 10�16,

Mann-Whitney test) (Figure 2A). Principal-component analysis

(PCA) was also used to reveal the genetic similarities and differ-

ences of expression patterns (Figure 2B).

eQTL mapping was subsequently performed using Efficient

Mixed Model Analysis Expedited (EMMAX) using the obtained

SNPs and expression profiles. A total of 12,207 eQTLs were de-

tected, involving 8,088 eSNPs and 6,449 eGenes (n = 5,197

PCGs, n = 1,252 lncRNAs), under a suggested threshold of

p < 2.18 3 10�6 (Figure 2C; Table S2).30 An average of 1 or 2

eQTLs were mapped for each eGene (Figure 2D), suggesting

that the expression variation is under relatively simple genetic

control. Themapped eQTLswere further classified as cis or trans

according to relative eGene location using an empirical value

(i.e., the SNP was within ±1 Mb of the transcription start site

[TSS] or transcription termination site [TTS] of each gene),35,36

yielding 3,444 cis eQTLs (involving 1,185 eGenes) and 8,763

trans eQTLs (involving 5,869 eGenes) (Figure 2E). For cis-eQTLs,

the associated lead eSNPs were distributed predominantly in

adjacent genes and enriched in proximity to TSSs or TTSs

(Figures S1A and S1B). Cis-eQTLs showed higher association

than trans-eQTLs did (p < 2.2 3 10�16, Mann-Whitney test) (Fig-

ure S1C). More than 77% of the eQTLs were shared between the

two biological replicates (Figure S1D; Table S2). In addition,

21.42% of eQTLs showed variance between the wild and culti-
vated accessions (Figures S1E and S1F). The distribution pat-

terns and frequencies of eQTLs reported here are consistent

with previous reports in maize seedlings,37 Brassica napa

seeds,38 rice shoots,39 cotton 15 DPA fibers30 and Arabidopsis

shoots.40 With regard to chromosomal location, the eQTLs iden-

tified here exhibited a significantly disproportionate distribution,

forming 293 eQTL hotspots (Figure 2F) The most notable hot-

spots spanned 1,756 kb (from 88,974,035 to 90,730,903 bp) on

chromosome ChrA07 and 7.23 kb (from 2,899,413 to

2,906,643 bp) on D08, which overlap with GWAS loci (Figure 2G).

Phenotypic relevance of GRNs derived from eQTLs
To systematically characterize theGRNsderived fromeQTLanal-

ysis, eGenes either in cis or in trans associated the eSNPs within

the sameLDblock (r2 > 0.1)were grouped as oneGRN (seeSTAR

Methods). This yielded1,014GRNs,with thenumberof eGenes in

each GRN ranging from 2 to 527, with an average of 13.

The pSNP dataset was adapted from the previous GWAS cat-

alog and represents 187 GWAS loci.12 The best linear unbiased

prediction (BLUP) values for each trait were also calculated on

the basis of phenotypic data from nine environments

(Table S3). The association signals identified by BLUP and SI

(seed index; the weight of 100 seeds) trait collected in 2018

(Dangtu) were consistent with those GWAS loci identified by

the phenotype in 2007, 2008, and 2009, respectively (Fig-

ure S2A). With the above analysis, the pSNPs used in this study

were reliable.
Cell Reports 42, 113111, September 26, 2023 3
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Figure 2. eQTL map for one day post-anthesis (DPA) lint-bearing ovules from 588 samples

(A) Pearson correlation coefficient (PCC) of samples on the basis of protein-coding gene (PCG) and lncRNA expression quantifications; correlations compare

replicates of the same accession (Same) and randomly selected samples from different accessions (Diff). Quantifications were normalized to FPKM (fragments

per kilobase of transcript per million mapped reads) before calculating the pairwise PCC. The boxplot shows the median and interquartile range (IQR). The end of

the top line is the maximum or the third quartile (Q) + 1.53 IQR. The end of the bottom line denotes either the minimum or the first Q� 1.53 IQR. Dots are either

more than the third Q + 1.53 IQR or less than the first Q � 1.53 IQR. Asterisks indicate significant differences by two-tailed Mann-Whitney test (***p% 0.001).

(B) Distinct separation of wild and cultivar groups was observed with principal-component analysis (PCA) of transcriptome profiles.

(C) Numbers of lncRNAs and PCGs associated with eQTLs.

(D) Number of eQTLs mapped for each eGene. The x axis represents the number of eQTLs mapped for each eGene, and the y axis represents the number of

eGenes in each group (PCG and lncRNA).

(E) Pie chart showing the number and proportion of cis- and trans-eQTLs.

(F) Scatterplot of 8,088 high-confidence eSNP-expression associations, with expression of 6,449 eGenes (y axis) against 12,207 eQTLs. Each dot represents a

detected eQTL.

(G) eQTL hotspot distribution across the genome, was determined in 1 Mb windows. The y axis indicates number of eGenes and is plotted against genetic

location. Arrows indicate two eQTL hotspots co-located with cotton yield GWAS loci. SI, seed index; BW, boll weight; BN, boll number; LP, lint percentage.
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To determine whether the identified GRNs tended to have

functional consequences associated with phenotype, the

pSNP and eSNP on the same LD were defined as being colocal-

ized with each other. Accordingly, 38 GRNs (3.75% [38 of 1,014])

were colocalized with GWAS loci with the associated function

(Figure 3A; Table S4). In total, this involved 1,090 eQTL and

701 non-redundant eGenes (Figure 3B; Table S5).

Among these 38 functional GRNs, 30 GRNs containing 657

eGenes were related to yield traits, while the other 8 GRNs con-

taining 44 eGenes were related to fiber quality traits (Figure 3B;

Table S5). Notably, it was notable that GRN_302 and GRN_808

were associated with yield phenotypes, together dominating

(60.36%) the total eGenes in the functional GRNs (Tables S4

and S5). In detail, GRN_302 contained 230 eGenes, and its

feature eSNP on chromosome A07 (A07:90680544) was colocal-

ized with a GWAS locus represented by a pSNP associated with

SI and BW (boll weight) (Figure 3B; Table S5). Meanwhile,

GRN_808 contained 169 eGenes with the feature eSNP on chro-

mosome ChrD08 (D08:2903486) was colocalized with a GWAS

locus associated with LP (lint percentage) and BN (boll number)

(Figure 3B; Table S5).

Previous studies have proposed that eGenes within the same

GRN should exhibit similar expression patterns in unique cell

types relevant to the phenotype of interest.41 To confirmwhether

the eGenes in the same GRNs identified here were reliable with

similar biological functions, their transcriptional activity was

examined using previously published transcriptome profiles

from 17 tissues in the upland cotton accession TM-1, which en-

compassed all developmental stages of seed and fiber.42 For

both GRN_302 and GRN_808, the eGenes exhibited a general

trend of tissue-specific expression (Figure 3C). Specifically,

over 60% of eGenes in GRN_302 were highly expressed in early

ovule/seed development (about 0–5 DPA) (Figure 3C), while

most eGenes in GRN_808 showed similar expression pattern

in early ovule and fibers (Figure 3C). In addition, 13 eGenes within

GRN_302 were found to be homologous to genes with reported

roles in seed and embryo development, such as FLA2,43

EMB3147, and EMB2735 (Figure 3C). Within GRN gene-gene in-

teractions were further examined using a protein-protein interac-

tion (PPI) network database.44 About 78.33% of the genes in

GRN_302 and 79.50% of those in GRN_808 were supported

as interactors by this PPI data. These proportions are higher

than among randomly selected eGenes and genes in same LD

(Figure 3D). The above analysis confirmed the eGenes in the

GRNs revealed here are highly likely associated with seed devel-

opment, with potential PPIs.

Crosstalk between functional GRNs involved in seed
cotton yield
In the present study, each eGene wasmapped with 1 or 2 eQTLs

(Figure 2D), suggesting that eGenes can be associated with

more than one genetic variation. Thus, pairwise comparisons

were performed to identify eGenes shared by multiple functional

GRNs. This yielded 18 instances of shared eGenes, indicative of

crosstalk between different functional GRNs (Figure 4A). For

example, the dominant network GRN_302 shared eGenes with

GRN_96 and GRN_243 (Figure 4A); all three of these GRNs

were associated with yield phenotypes at significance levels
below the threshold of p < 2.18 3 10�6. Specifically, GRN_302

was associated with SI and BW, while GRN_96 and GRN_243

were associated with SI and LP (Figure 4B).

Regarding specific genes in the regulatory networks, NF-YB3

(GH_A07G2187) and FLA (GH_A07G2189) are two cis-eGenes

in GRN_302 (Figures 4C and S2B). A Manhattan plot showed

that the genomic variants within the corresponding GWAS locus

were significantly associated with the expression of NF-YB3 and

FLA2 in all examined environments (Figures 4C, S2C, and S2D).

GRDP1 (GH_A02G1719) is a trans-eGene in GRN_302, but a

cis-eGene in GRN_96 (Figure 4C). eQTL mapping of GRDP1 re-

vealed two regulatory variants located in two SI-GWAS loci on

ChrA02 and ChrA07, which represent cis- and trans-regulation

patterns in GRN_96 and GRN_302, respectively. This finding

indicates an interaction between GRN_302 and GRN_96 in

controlling SI (Figure 4C). Similarly, IDD7 (GH_A06G0949) is a

trans-eGene in GRN_302, and a cis -eGene in GRN_243 (Fig-

ure 4B). eQTL mapping of the cis-eGene IDD7 likewise identified

two regulatory variants located in two LP-GWAS loci in ChrA06

and ChrA07, which represent cis- and trans-regulation patterns

in GRN_243 and GRN_302, respectively (Figure 4D).

Here we also adopted the transcriptome-wide and regulome-

wide association studies (TWAS)45 to validate the presumed

causal role of the NF-YB3, FLA2, and GRDP1. In total, 297

expression-phenotype associations were found, involved with

83 PCGs, and 13 lncRNAs (p < 9.2 3 10�4) (Figure 4E;

Table S6). Consistent with the integrative functional GRNs, NF-

YB3, FLA2, and GRDP1 all achieved significance in the TWAS

on seed cotton yield traits (Figure 4E; Table S6).

Together with the shared eGenes from different GRNs,

whether cis or trans, these GRNs might form an interactive

connection that collectively constitutes a potential network regu-

lating seed cotton yield (Figure 4F).

Prioritizing the important genes in GRNs using XGBoost
The power of each eGene in phenotype regulation is still unclear.

Here we used the XGBoost algorithm to prioritize the most

important eGenes. Taking the screened eGenes within major

functional GRNs as features, XGBoost was used to construct

regression models for the phenotype in each environment (Fig-

ure 5A). The mean PCC between the true values from the test

data and the predicted values was high in SI and LP (Figure 5B).

FL (fiber length) and FS (fiber strength) phenotypes were deter-

mined as controls, for which the obtained r values were lower

than 0.1 (Figure 5B). This confirms the impacts of the identified

GRNs on seed cotton yield.

Next, the feature importance for measuring the distinction in

prediction was exported from the XGBoost model (Table S7).

Among the important genes so identified, the potential pleio-

tropic genes NF-YB3, FLA2, GRDP1, and IDD7 were ranked at

the top (Figure 5C).

The interactive GRNs captured the missing heritability
for seed size
Together with the shared eGenes, the GRNs form an interactive

connection that comprises a potential regulatory network for

seed cotton yield. In validating the effects of this extended

network, a key question is whether the detected GRNs can
Cell Reports 42, 113111, September 26, 2023 5
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Figure 3. Gene regulatory networks (GRNs) with phenotype-associated feature SNPs

(A) Analytical workflow for functional GRN construction. Both GWAS and eQTL analysis were conducted to obtain phenotype-associated lead SNPs (pSNPs) and

gene expression-associated lead SNPs (eSNPs), respectively. Those eSNPs/pSNPs within the same LD block (r2 > 0.1) were merged into one lead SNP, and

eGenes within an LD block were clustered into a GRN. GRNs having feature pSNPs were considered to be functional GRNs.

(B) Heatmap showing the 38 functional GRNs and their genotypic associations. Numbers in boxes indicate how many times the lead causal SNP satisfied the p

value threshold for genome-wide significance in the GWAS. The bar plot in the right panel shows the number of PCGs (red) and lncRNAs (blue) in each GRN.

(C) Heatmap showing expression of eGenes in GRN_302 and GRN_808 across different tissues. Thirteen eGenes reported to play roles in seed and embryo

development are highlighted.

(D) Bar plot showing the percentage of eGenes in GRN_302 and GRN_808 that are also identifiable as interactors in the STRING protein-protein interaction

database (https://cn.string-db.org/). Randomly selected eGenes and genes in LD blocks were used as controls.
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Figure 4. The joint additive effect of yield-related GRNs

(A) Overlap of eGenes across different functional GRNs. The GRNs that shared genes with GRN_302 are colored red.

(B) The relationship between representative GRNs (GRN_302, GRN_96, and GRN_243) and their associated phenotypes. The heatmap shows the Pearson

correlation coefficients (PCCs) of different phenotypes.

(legend continued on next page)
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provide quantitative power to explain the heritability, with

increased portion. To quantify the relative genetic contribution

of each GRN to phenotypic variation, narrow-sense heritability

(h2) can be calculated using the local variants.46 Hereafter,

h2GRN indicates the local variance explained by SNPs corre-

sponding to cis- and trans-eGenes within a GRN. In the

interests of comparison, we also calculated the variance ex-

plained by GWAS loci and randomly selected eSNPs, denoted

h2GWAS + random, as well as the variance explained solely by

randomly selected eSNPs, termed h2random.

The combined heritability of the effect of GRN_302 on SI was

found to be significantly increased by about 3-fold (19.34%)

compared with that of GWAS loci alone (7.00%), while the

heritability of the same number of randomly selected eGenes

is 1.84% (Figures 6A and S3A). The higher heritability of

GRN_302 is highly likely because of the two trans-eGenes asso-

ciated with the causal variants from GRN_96 and GRN_243 (Fig-

ure 4F). To test this hypothesis, the combined heritability esti-

mated for GRN_302+GRN_96+GRN_243 were evaluated, the

result showed that the combined heritability achieved an even

higher level of significance compared with GWAS loci comprised

of the causal variants of GRN_302, GRN_96, and GRN_243

(h2GRN302+GRN_96+GRN243, 20.81%; h2GWAS, 8.86%; h2random,

1.50%) (Figures 6B and S3B), indicating that GRNs can capture

phenotype-associated genes that haveminor effects and are un-

detectable by GWAS. For the seed size associated phenotypes

of SI, LP, BW, and BN, h2GRN was significantly higher than either

h2GWAS, random or h2random (p = 2.2 3 10�16, Mann-Whitney test)

(Figures 6C and S3C). Meanwhile, the joint effects of GRNs as

represented by h2GRN did not affect fiber quality traits (FS, FL, fi-

ber uniformity [FU], and fiber micronaire [FM]), which is consis-

tent with the GWAS results (Figures 6C and S3). This control

confirmed that the GRNs reveal at 1 DPA ovule stage using

eQTL network can predominantly explain the regulation on

seed development and seed size.

NF-YB3, FLA2, and GRDP1 are identified as the genes
most likely responsible for the seed size phenotype
NF-YB3, FLA2, and GRDP1 were top-ranked eGenes prioritized

bymachine learning and TWAS (Figure 5C). The feature eSNP on

GRN_302 is located within a GWAS locus for which the LD block

spans a 270.74 kb region on chromosome A07 and contains 11

annotated genes (Figure S3B). NF-YB3 and FLA2 are two cis-

eGenes on this locus (Figures 4C and 7A). The expression of

NF-YB3 and FLA2 was significantly correlated with SI and BW

phenotypes (Figures 7B and S4). The homolog ofNF-YB3 in Ara-

bidopsis is AT4G14540, which encodes a nuclear factor Y tran-

scription factor, NF-YB3, that has been well-studied in embryo-
(C) Manhattan plot for various traits and gene expression; from top to bottom, SI p

chromosomal location of SNP and the y axis is the strength of the association (�l

(D) Manhattan plot for various traits and gene expression; from top to bottom, LP p

and the y axis is the strength of the association (�log10[p value]). The causal var

(E) Manhattan plot of TWAS results for the SI phenotype. Each point represents a s

with SI are plotted above or below the black bold line. The genomic positions o

highlighted.

(F) Connections across GRN_302, GRN_243, and GRN96. Nodes represent eG

highlighted in red. Lines represent trans regulation.
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genesis and seed development.47–54 The ectopic expression of

cotton NF-YB3 decreased the seed size in the transgenic Arabi-

dopsis (Figure S5), which confirmed its direct impact on seed

development. In addition, these data confirmed the eQTL anal-

ysis can efficiently navigate to seed regulation genes. The homo-

log of FLA2 in Arabidopsis is AT4G12730, which encodes fasci-

clin-like arabinogalactan-protein 2 with reported function in seed

development.43,55 FLA2 is actively expressed in the leaf, flower,

and early ovules during seed development in both Arabidopsis

and cotton (Figure S6). Statistical analysis further revealed that

the expression of these two eGenes to be negatively correlated,

suggesting that NF-YB3 and FLA2may play antagonistic roles in

coordinating seed development (Figures 7C and S4).

GRDP1 is a trans-eGene in GRN_302, but a cis-eQTL in

GRN_96 (Figures 4C and 7A). The GRDP1 homolog in Arabidop-

sis isAtGRDP1 (AT2G22660), with reported data exclusive to the

expression pattern in the embryo during seed development,

seed germination, and ABA response.56,57 Cotton cultivars of

the AA haploid type, which predominate in CUCP1, exhibited

relatively low GRDP1 expression (p < 10�16, Mann-Whitney

test) (Figure 7C), and variation in GRDP1 expression was found

to be positively correlated with LP and negatively with SI (Fig-

ure 7C). In addition, GRDP1 in GRN_96 is located in a selective

sweep region associated with cotton domestication (Figure 7D)

and exhibits fixed haplotypes in the cultivated population within

CUCP1 (Figure 7D). The inclusion ofGRDP1 in a selective sweep

region was also reported in a latest study using an upland cotton

population with an even large sample size of 1,000 accessions.58

Toconfirm its function,weconstructed transgeniccotton toalter

the expression of the endogenous GRDP1. The T2 generation of

transgenic seeds frommultiple independent lines of overexpress-

ing GRDP1 (OE-GRDP1), RNAi (RNAi-GRDP1), and antisense of

GRDP1 (AS-GRDP1) were obtained (Figure 7E). Real-time PCR

examination confirmed thatGRDP1 expression were significantly

higher in theOE-GRDP1 lines than in thewild-type (WT), andsignif-

icantly lower in the RNAi lines and antisense lines (Figure 7F).

Furthermore, the SI was significantly larger in theOE-GRDP1 lines

than in the WT lines, while it was significantly lower in AS-GRDP1

and RNAi-GRDP1 lines (Figure 7G). The seed width and length

showed a similar trend. On the contrary, LP was higher in

AS-GRDP1 and RNAi-GRDP1 lines, while it was significantly

higher inOE-GRDP1 lines compared with WT (Figure 7G).

The above data confirmed that GRDP1 has a direct effect on

cotton seed size, and the natural variations in GRDP1 structure

and expression are of great potential in improving seed cotton

yield in cultivated cotton populations. Moreover, the top-ranked

eGenes in the integrative study are demonstrated to be the

causal genes in the seed size associated GWAS loci.
henotype and expression of FLA2,NF-YB3, andGRDP1. The x axis is the SNP

og10[p value]). The causal variations of GRN_302 and GRN_96 are highlighted.

henotype and expression of IDD7. The x axis is the SNP chromosomal location

iations of GRN_302 and GRN_243 are highlighted.

ingle cis-eGene. Genes whose expression is positively or negatively correlated

f each eGene are plotted on the x axis. NF-YB3, FLA2, GRDP1, and IDD7 are

enes (circles, PCGs; triangles, lncRNAs). The cis-eGenes in each GRN are
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Figure 5. Prioritizing important genes in GRNs using XGBoost

(A) Machine learning workflow. The input data consisted of instances (samples) with labels (phenotypes) and values of features (eGenes). Instances were first split

into training and testing sets. The training set was further split into a training subset (90%) and validation subset (10%) in a 5-fold cross-validation scheme. After

tuning themodel parameters, the optimal model was used to provide performancemetrics on the basis of PCC r value between the predicted and actual values in

each environment, predict labels in the testing set for model evaluation purposes, and obtain feature importance scores.

(B) Boxplot showing performance on the basis of PCC r value between the predicted and actual values in each phenotype.

(C) Coefficients are averaged from 100 iterations of model building.

(D) Feature importance (F score) of each eGene. The x axis represents genes ordered by F score within each phenotype and the y axis the F score value exported

by XGBoost.
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DISCUSSION

Mining potentially functional genes using an eQTL map
In this study we constructed an eQTL map of the 1 DPA ovule in

cotton, comprising 12,207 eQTLs. This map serves as a bridge

between phenotype-associated variation and gene expression.

In total, 66 of 187 reported phenotypic GWAS loci were colocal-

ized with cis- and trans-eQTLs.

Most studies prioritizing genes for complex traits have consid-

ered only cis-eQTL effects, despite the fact that trans-eQTLs ac-

count for a substantial portion of the eQTL regulation network.

The effect of each trans-eQTL is in general as weak because of

individual variation35 and its alternative tissue-specific expres-

sion pattern rather than cis-eQTLs.59 In this study, we estimated

heritability on the basis of the variants of both cis- and trans-
eGenes in GRN and successfully captured the missing heritabil-

ity of seed size related traits (Figure 6), which emphasizes the

importance of trans-eGenes as a group.

Crop domestication often involves genomic sweeps that re-

move rare variants from cultivated populations.11 Thus, rare var-

iants associated with phenotypes are difficult to detect by GWAS

in a cultivated population.60 However, if any critical genetic var-

iants are present in an upstream regulatory module, the associ-

ated variations in important functional genes should be notice-

able accordingly. The effects of these genetic variants on

downstream gene expression in a GRN can also be detected

as trans-eQTLs. The presented results demonstrate an integra-

tive analysis using eQTL and GWAS can be used to construct

a GRN can retrieve part of the ‘‘lost heritability’’ by mining a

comprehensive resource that points to important genes.
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Figure 6. GRNs explained a larger fraction of heritability than the functional GWAS loci

(A–C) Boxplots show the estimated heritability (h2) across different phenotypes explained by different sets of eSNPs shown in the corresponding color code.

Boxes show the medians and IQRs. The end of the top line is the maximum or the third quartile (Q) + 1.5 3 IQR. The end of the bottom line denotes either the

minimum or the first Q� 1.53 IQR. Dots indicate values outside those bounds. Asterisks indicate significant differences by two-tailed Mann-Whitney test (* p%

0.05, **p % 0.01, and ***p % 0.001).
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Crosstalk over GRNs reveals the pleiotropy of GWAS loci
Most agronomic traits are controlled bymultiple quantitative loci,

and many phenotypes tend to be integrated or controlled by

pleiotropic genes.61 Interaction between loci (i.e., epistasis)

also increases the complexity of the genetic basis of a pheno-

type. Thus, the dissection of a single gene or a gene related to

one specific trait is insufficient for molecular breeding.

In the present study, we discovered that different genetic var-

iants associated with related but different phenotypes can influ-

ence the expression of the same genes via cis- or trans-regula-

tory mechanisms. To identify the eGenes that are mutually

influenced by different loci, independent functional GRNs were

compared in a pairwise manner, which revealed cis-eGenes to

be shared acrossGRNs as trans-eGenes. The crosstalk between

GRNs via trans-regulation by eGenes provides insight into the

pleiotropy of GWAS loci. Using these pleiotropic genes from

GWAS loci can aid in engineering multiple desirable phenotypes

through gene and genome editing technologies.

Prioritizing important genes using machine learning
Machine learning methodologies show great promise for

analyzing complex biological data. However, workingwith a large

number of predictors (p) and a small number of samples (n) poses

a major challenge.62 This is particularly true for biological data

because the large number of genomic variations and genes with

expressiondata thatmustbe examined candramatically increase

computational costs, especially since they are usuallymuchmore

numerous than the sample.63,64 This study demonstrates that us-

ing genes colocalized in GWAS loci and eQTL GRNs can effec-

tively reduce the dimensionality of biological data for machine

learning. Specifically, it narrows the focus from49,637 expressed

genes down to 701 trait-associated genes. By using XGBoost
10 Cell Reports 42, 113111, September 26, 2023
training, the top-ranking 661 genes in cotton yield GRNs were

identified. This GRN navigation strategy successfully identified

the top-ranking genes in seed size regulation.

In addition to eQTLs, a wide spectrum of advanced molecular

biotechnologies can be used to construct GRNs and reduce the

dimensionality of biometrics for machine learning. Typically,

GRNs can be characterized on the basis of physical interactions

among molecules, or genetic regulatory relationships.65 Among

the state-of-the-art methods for GRN construction, one option

is to use the Hi-C technology to establish the three-dimensional

(3D) genome, which includes extensive DNA-DNA and DNA-

RNA interactions.66 Single-cell multi-omics can also be applied

to uncover GRNs.67 In future study, GRNs identified through

different platforms and technologies can be further used to prior-

itize important genes with machine learning or deep learning

algorithms.

Limitations of the study
Because of the population-wide working load in this study, only

one developmental stage of ovule was selected. As a result,

eQTLs that are specifically expressed in other tissues were not

examined. This study used poly-A selected transcriptome

sequencing technology, so any lncRNA without poly A was not

considered. Another limitation is that the phenotype and RNA

samples were collected in different years. According to our

experience and open discussion, the phenotype remained stable

across multiple environments.

STAR+METHODS

Detailed methods are provided in the online version of this paper
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Anti-DDDDK tag (Binds to FLAG tag sequence) Abcam Cat#ab213519

HRP-labeled Goat Anti-Rat IgG(H + L) Beyotime Cat#A0192

Bacterial and virus strains

DH5a Chemically Competent Cell WEIDI Cat#DL1001

LBA4404 Chemically Competent Cell WEIDI Cat#AC1030

GV3101 Chemically Competent Cell WEIDI Cat#AC1001

Biological samples

Biological samples used in this study, see Table S1 This study N/A

Chemicals, peptides, and recombinant proteins

TrizolTM Invitrogen Cat# 15596018

DNase I Promega Cat# Z3585

M-MLV reverse transcriptase Promega Cat# M1701

XbaI NEW ENGLAND Biolab Cat#R0145

BamHI NEW ENGLAND Biolab Cat#R0136
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Whole genome resequencing data

for 279 accessions of cotton leaf

Fang et al.12 NCBI Bio Project: PRJNA375965

Upland cotton, G. hirsutum, ac.

TM-1 Reference Genome

Hu et al.34 http://cotton.zju.edu.cn/

source/TM-1_V2.1.fa.gz

Phenotypic data for fiber traits used

in association analysis.

Fang et al.12 https://mascotton.njau.edu.cn/info/

1058/1132.htm or https://github.com/

epi-cotton/eQTL_XGBoost/

Experimental models: Organisms/strains

G. hirsutum ac. TM-1 College of Agriculture

and Biotechnology,

Zhejiang University

N/A

Arabidopsis thaliana, Col-0 ABRC (www.arabidopsis.org) N/A

Oligonucleotides

Primers used in this study This paper Table S8

Recombinant DNA

pWMV062-AADA-OE-GRDP1 This paper N/A

pWMV062-AADA-AS-GRDP1 This paper N/A

pBI121_NF-YB3 This paper N/A

Software and algorithms

Fastp (v 0.12.2) Chan et al.68 https://github.com/OpenGene/

fastp; RRID:SCR_016962

SAMtools (v 1.16) Li et al.69 https://samtools.sourceforge.net/

mpileup.shtml; RRID:SCR_005227
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Picard (v 1.124) Broad Institute et al. http://broadinstitute.github.io/picard/;

RRID:SCR_006525

VCFtools (v 0.1.13) Danecek et al.71 https://vcftools.github.io/index.html;
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Hisat2 (v 2.1.0) Pertea et al.72 http://ccb.jhu.edu/software/hisat2/

index.shtml; RRID:SCR_015530

StringTie (v 2.0) Pertea et al.72 https://ccb.jhu.edu/software/stringtie/;

RRID:SCR_016323

Cufflinks (v 2.2.1) Trapnell et al.73 http://cole-trapnell-lab.github.io/

cufflinks/cuffmerge/; RRID:SCR_014597

Coding Potential Calculator2 (v 0.1) Kang et al.74 http://cpc2.cbi.pku.edu.cn;

RRID:SCR_002764

Pfam Finn et al.75 http://pfam-legacy.xfam.org/;

RRID:SCR_004726

GCTA (v 1.92.1) Yang et al.46 https://yanglab.westlake.edu.cn/

software/gcta/

EMMAX (beta-07Mar2010) Kang et al.76 https://genome.sph.umich.edu/wiki/EMMAX

Genetic type 1 Error Calculator (v 1.0) Li et al.77 http://pmglab.top/gec/

GOstats (v 2.50.0) Falcon et al.78 http://gostat.wehi.edu.au;

RRID:SCR_008535

XGBoost (v 1.7.5) Chen et al.79 https://xgboost.readthedocs.io/en/

stable/; RRID:SCR_021361

FUSION Gusev et al.80 http://gusevlab.org/projects/fusion/

Cytoscape (v 3.4.0) Shannon et al.81 https://cytoscape.org; RRID:SCR_003032

Hot_scan Silva et al.82 https://github.com/itojal/hot_scan;

RRID:SCR_002840

STRING Szklarczyk et al.45

von Mering et al.78
https://cn.string-db.org/;

RRID:SCR_005223

Plink (v 1.9) Purcell et al.77 https://www.cog-genomics.org/plink/;

RRID:SCR_001757

Pheatmap package Raivo Kolde https://cran.r-project.org/web/packages/

pheatmap/index.html; RRID:SCR_016418

Original code of eQTL mapping This study https://github.com/epi-cotton/eQTL_XGBoost
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Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Xueying

Guan (xueyingguan@zju.edu.cn).

Materials availability
All unique/stable materials and reagents generated in this study are available from the lead contact with a completedMaterials Trans-

fer Agreement.

Data and code availability
d mRNA sequencing data are deposited under the NCBI Bio Project: PRJNA730082.

d All original code has been deposited was displayed in https://github.com/epi-cotton/eQTL_XGBoost.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Weused 279Gossypium hirsutum (Upland cotton) accessions collected from the Chinese national medium-term cotton gene bank at

the Institute of Cotton Research (ICR) of the Chinese Academy of Agricultural Sciences (CAAS) and National Wild Cotton Nursery,

Sanya, China and. Plants of the 279 accessions were grown in a farm environment during the April-October, 2018 at Dangtu, Anhui,

China. Two independent biological samples of each accession were grown in different experimental fields.

Arabidopsis thaliana (Col-0) were grown on soil or petri dishes at 23�C under long-day photoperiod (16/8 h light/dark).

METHOD DETALIS

Plant material and growth conditions
A total of 279 accessions were collected from the Institute of Cotton Research at CAAS, including 34 wild/landrace Gossypium hir-

sutum (Gh) accessions, such as G. palmeri, G. punctatum, G. morrilli, G. yucatanense, G. richmondi, G. marie-galante, and

G. latifolium, as well as 245 core germplasm samples (Table S1). The core germplasm accessions were previously genotyped by

our laboratory,12 while the whole-genome sequencing of 34 wild accessions was newly conducted in this study (Table S2). Plants

of the 279 accessions were grown in a farm environment during the summer of 2018 in Dangtu, Anhui, China. Two independent bio-

logical samples were taken from each accession and grown in different experimental fields. For ovule collection, 16–18 plants were

grown for each accession; the 1-DPA ovules collected were then bulked for total RNA extraction and sequencing. Leaves from the 34

wild/landrace Gh accessions were collected for DNA extraction, sequencing, and genotyping.

Phenotypic data for nine complex traits (seed index [SI], boll weight [BW], boll number [BN], lint percentage [LP], fiber elongation

[FE], fiber micronaire [FM], fiber length [FL], and fiber strength [FS]) were collected over three years (2007, 2008, and 2009) from nine

environments: three farms each in Anyang (AY) in the Yellow River cotton-growing area, Nanjing (NJ) in the Yangtze River cotton-

growing area, and Korla in Xinjiang (XJ), the northwestern cotton-growing area.12 The best linear unbiased prediction (BLUP) values

(Bates et al., 2015) were estimated for different phenotypes using the R package lme4. These values segregated the genetic and

environmental effects that influence the phenotypes.83

Sample preparation
Genomic DNA of 34 wild/landrace Gh accessions was extracted from young leaves using the CTAB method. For RNA profiling,

1-DPA ovules were harvested from 12:00 to 1:00 p.m. The aim was to collect samples in the shortest amount of time possible so

as to minimize the effects of physiological changes. Harvested ovules were frozen with liquid nitrogen for RNA extraction. Total

RNA was extracted using the Trizol method, following the the manufacturer’s instructions, and RNA quality was verified with an Agi-

lent 2100 Bioanalyzer. Transcriptome libraries were constructed using the standard Illumina RNA-seq protocol (Illumina, Inc., San

Diego, CA, catalog no. RS-100-0801). RNA and DNA sequences were generated as 150 bp paired-end reads from libraries with in-

serts of 350 bp.

SNP identification and annotation
WGS data were quality controlled using fastp (V 0.12.2) with default parameters.68 Genome and annotation files of TM-1 v2.134 were

indexed using BWA index with the flag (-a bwtsw).84 Reads were mapped to the reference genome using the BWA. SAM files were

sorted, indexed, and converted to BAM files using SAMtools (V 1.16).69 Only uniquely mapped non-duplicated reads were used for

SNP calling according to the best practices pipeline of GATK (v3.7).70 Duplicated reads in the resulting alignment BAM files were

marked using Picard Tools (http://picard.sourceforge.net). SNPs were called based on a minimum phred-scaled confidence

threshold of 20 (-stand_call_conf >20) using the GATK tool HaplotypeCaller and then filtered using the GATK tool VariantFiltration

with the following requirements: Fisher strand value (FS) < 30.0 and quality by depth value (QD) > 2.0. For GWAS and eQTL analysis,

SNPs having a high missingness rate (>20%) or lowminor allele frequency (MAF <0.05) were removed using VCFtools (V 0.1.13) with

the parameters (–remove-indels, –maf 0.05, –max-maf 0.95, –max-missing 0.8).71 Missing genotypes were imputed using Beagle

with the parameters (window = 50000, overlap = 5000, ibd = True).85 This process identified 1.19 million autosomal SNPs, output

in a variant call format (VCF) file.

LncRNA annotation
To examine the expression of non-coding sequences, we performed population-level transcript assembly of long non-coding RNAs.

RNA-seq data were quality controlled using fastp (V 0.12.2) with default parameters.68 An average of 24.34 million reads was ob-

tained for each library. Clean RNA-seq reads (150 bp paired-end) were aligned to the Gh TM-1 v2.1 reference genome using Hisat2

(V 2.1.0) with parameter (–dta).72 Mapped reads in each library were subsequently passed to StringTie (V 2.0) for transcript assem-

bly72 using annotated TM-1 transcripts34 as a reference transcriptome; the transcripts so assembledwere combined into a unified set

using cuffmergewith parameter (-c 3).73 Transcripts of less than 200 nt were discarded. UsingCuffcompare (V 2.2.1), transcripts were

given a class code of ‘‘u,’’ ‘‘x,’’ or ‘‘i,’’ respectively representing intergenic sequences, antisense sequences of known genes, and

intronic sequences. The Coding Potential Calculator2 (CPC2) (V 0.1) was used to calculate the coding potential of transcripts of

each given class (‘‘u,’’ ‘‘x,’’ or ‘‘i’’) with default parameters.74 All transcripts with CPC scores >0 were discarded. The remaining
18 Cell Reports 42, 113111, September 26, 2023
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transcripts were subjected to pfam_scan in order to exclude those containing known protein domains (cutoff <0.001).75 The tran-

scripts left after that step were considered candidate lncRNAs. To reduce isoform complexity, only the longest transcript of each

locus was used for further analysis.

Expression profiling
Gene expression of the newly annotated transcripts, including lncRNAs, was quantified using StringTie (V 2.0).72 Pearson’s correla-

tion coefficient was calculated for replicates using the cor () function in R. For comparison of transcriptomes across different tissues,

raw RNA-seq were analyzed through our bioinformatics pipeline as described above.42 Heatmaps of the expression of eGenes

belonging to GRN_302 and GRN_808 were generated using the pheatmap package (https://cran.r-project.org/web/packages/

pheatmap).

Genome-wide association analysis of eQTLs
The analysis was conducted on 279 individuals who had both genotype and gene expression data available. GWAS was performed

for those accessions with a total of 1.19 million SNPs (MAF >5% and missing rate <20%). Population structure was calculated using

GCTA (V 1.92.1) with the parameters (–make-grm –pca).46 Only genes having FPKM >1 in more than 5% of accessions were defined

as expressed for the purpose of eQTL mapping. The expression of each gene was normalized using QQ-normal in R as is commonly

done in QTL studies.86 Ultimately, a dataset comprising 42,858 PCGs and 6,779 lncRNAs was obtained and used to conduct down-

stream analyses. The first three genotyping principal components (PCs) and kinship matrix were employed as covariates to control

false-positive associations. Genotype files were transposed using plink (V 1.9) with the parameters (–bfile –recode12 –output-

missing-genotype0 –transpose –out).77 Kinship matrices were obtained using the emmax-kin function of EMMAX with parameters

(-v -d 10).76 eQTLmapping was carried out using EMMAXwith a mixed linear model and parameters (-v -d 10 -t -o -k -c).76 The effec-

tive number of independent SNPs was calculated using the Genetic type 1 Error Calculator (GEC), and significant SNPs were iden-

tified using the threshold of p < 2.18 3 10�6 suggested by GEC.87

To reduce eQTL redundancy, we conducted linkage disequilibrium (LD) analysis for the associated SNPs. Lead SNPs within the LD

block (R2 > 0.1) for each trait were merged into one eQTL using plink (V 1.90) with parameters (-r2 -l -window 99,999).77 The eQTLs

were then further classified as cis or trans based on the distance between the marker SNP and the transcription start sites or tran-

scription end sites of associated genes (threshold: 1 Mb).35 Hotspots were identified using hot_scan with parameters (-m 5000, -s

0,05).82 Cis- and trans-eGenes in GRN_302 were visualized using Cytoscape (version 3.4.0; www.cytoscape.org).81

Construction of GRNs
Linkage disequilibrium (LD) pruningwas performed to provide a list of independent GWAS variants for downstream analyses. Pruning

was carried out according to three linkage disequilibrium thresholds (R2 > 0.1) using an in-house Perl script. To test whether the

eGenes within a GRN havemore connections and interactions among themselves, we downloaded PPI pairs from the STRING data-

base (https://stringdb-static.org/download/protein.links.v11.5/3702.protein. links.v11.5.txt.gz),44,88 which consisted of 16,029,730

PPI pairs.

Gene function enrichment analysis
To determine whether genes within a GRN share common functional features, we performed GO term enrichment analyses using a

hypergeometric test in GOstats (V 2.50.0).78 GO terms were retrieved from the annotation files of TM-1,34 and categories that con-

tained at least five genes were considered significantly enriched if having a false discovery rate-corrected p < 0.05.

GRN effect on heritability
Two GWAS catalogs previously published were employed to assess the impacts of SNPs in GRN contribute to phenotypic vari-

ability.12,89 The analysis considered six complex agronomic traits: seed index (SI), boll weight (BW), boll number (BN), lint percentage

(LP), fiber strength (FS), and fiber length (FL). The association of phenotypic variation with the GRN was evaluated using Genomic-

Relationship-matrix Restricted Maximum Likelihood (GREML), performed in GCTA.46 Three datasets were produced: (1) SNPs from

cis/trans eGenes (n = 216) within GRN, (2) eSNPs in GRN_302 and randomly selected eGenes not in GRN, and (3) SNPs from

randomly selected genes. The test and control groups in all three datasets used the same number of SNPs. The genetic relationship

matrices for those datasets were built using GCTA (v 1.92.1) with the parameter (make-grm), then estimated the amount of pheno-

typic variation in FL, FS, FU, and LP that could be explained by each SNP set using GCTA with the parameter (mgrm).46 We repeated

this process 100 times, each time randomly sampling the set of SNPs.

Machine learning models for trait prediction
The predictive model for phenotype based on gene expression was constructed using an ensemble of gradient boosted trees

(XGBoost).79 The eGenes belonging to pSNP-eGene pairs were informative genes. For the SI trait, the 246 available individuals

were initially partitioned into training and testing datasets consisting of 90% and 10% of the data, respectively. The testing samples

were never used in training.
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For prediction, we applied the XGBoost79 module of python. The XGBoost classifier is a gradient boosting method. The goal func-

tion of the XGBoost algorithmmodel is obj ðqÞ= LðqÞ+UðqÞ; where LðqÞ is the training loss function andUðqÞ is the complexity function

of the tree. LðqÞ=Pn
i = 1lðyi; byiÞ; lðyi; byiÞ corresponds to the training loss function for each sample, where yi represents the true value of

the ith sample and byi represents the estimated value of the i th sample. Then, byi =
PK

k =1fkðxiÞ;fk˛F, whereK represents the number of

trees, F represents all possibleDT , and f denotes a specific CART tree.UðfÞ = gT + 1
2 l

PT
i = 1w

2
i , in whichwi is the score on the i th leaf

node and T is the number of leaf nodes in the tree. By adjusting the parameters, the objective function was continuously optimized,

and optimal results were ultimately obtained.21 The grid search algorithm was used to optimize hyper-parameters in each iteration,

which included max_depth, min_child_weight, gamma, subsample, col-sample_bytree, and learning_rate.

This process was repeated 100 times using different seeds to take into account the variation in the hyperparameter optimization

procession. As a description of stability of the individual phenotype predictions, we computed themean square error (MSE) andR2 of

the predictions in the test set. Finally, the importance of each gene was calculated.

Transcriptome-wide association (TWAS)
The TWASwas carried out using the functional summary-based imputation (FUSION) approach (http://gusevlab.org/projects/fusion/

).80 Thismethod precomputes the functional weights of gene expression, and then integrated themwith summary-level GWAS results

to impute the association statistics between gene expression and phenotype. The FUSION approach only considers cis-eGenes,

typically within 500 kb or 1 Mb; in this work, 1,085 cis-eGenes were included in the analysis.

Transgenic cotton and Arabidopsis

The transgenic cotton was transformed by WIMI Biotechnology Co., Ltd. using a shoot apical meristem (SAM) cells-mediated trans-

formation system (SAMT).90 To construct the over-expression and suppression vectors of GRDP1, total RNA was isolated from the

cotton TM-1 using Trizol reagent (Invitrogen) according to themanufacturer’s instructions. And was then treated with DNase I (Prom-

ega). First-strand cDNA was then synthesized using M-MLV reverse transcriptase (Promega). The Open read frames (ORFs) of

GRDP1 were amplified by regular PCR with added XbaI and BamHI, and then inserted into the basic vector pWMV062-AADA

controlled by the constitutive Cauliflower mosaicvirus (CaMV) 35S promoter. OE-GRDP1 and AS-GRDP1 constructs were intro-

duced into G. hirsutum accession TM-1 via Agrobacterium tumefaciens (strain LBA4404) using SAMT.90 The T2 homozygous trans-

genic lines (confirmed by target gene PCR, target protein detection, and target gene real-time qPCR) were used for further analysis.

The primers used for vector construction and PCR-based screening are provided in Table S8.

To generate transgenic over-expression lines of Arabidopsis plants, the coding region ofNF-YB3were cloned into Xba I andBamH

I restriction sites of pBI121 binary vectors, under the control of the CaMV 35S. The pBI121_NF-YB3 plasmids were transformed into

Arabidopsis thaliana Col-0 by A. tumefaciens (GV3101) using the floral dip method. Primers are listed in Table S8. The integration of

the transgene into different transgenic lines was confirmed by PCR.

QUANTIFICATION AND STATISTICAL ANALYSIS

R software (v 4.3.1) was used for data analysis. Statistics are described in the corresponding section of method details and figure

legends. For bar plot, data are shown as mean ± SD. To assess the statistical significance of a difference between two groups,

two-tailed Student’s t tests were used: *p% 0.05, **p% 0.01, ***p% 0.001, ****p% 0.0001, ns = non-significant. For non-parametric

test, the Mann-Whitney U test was used.
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